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Exploration is essential for general-purpose robotic learning, especially in open-ended environments where
dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their
semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation
for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it
difficult to determine whether imagined transitions are physically feasible or informative. To bridge the
gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration
framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene
configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract
RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and
generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world
tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL
baselines, as evidenced by a 4.1 to 7.8 X increase in the entropy of visited states. Moreover, the collected
experience supports downstream learning, producing policies that closely match or exceed the performance of
those trained on human-collected demonstrations.

2 Projects: https://ive-robot.github.io/
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Figure 1: Comparison of human, RL, and IVE exploration strategies. (a) Humans explore by seeking novel scene
configurations and understanding the environment (Ten et al., 2021, Modirshanechi et al., 2023), often enhanced by
goal verbalization (Lidayan et al., 2025). (b) RL agents explore using a range of techniques, including intrinsic reward
or goal sampling, to maximize the coverage of visited states. (c) IVE (ours) leverages VLMs to structure exploration
via scene description, exploration, verification, memory, and action tools, each aligned with key aspects of human
exploration.

1. Introduction

Exploration is a fundamental capability for general-purpose robotic learning, particularly in open-ended
environments where dense rewards, explicit goals, or curated demonstrations are limited or unavailable.
In such settings, agents must autonomously discover diverse and meaningful interactions that support
downstream learning and generalization (Aubret et al., 2023, Lee et al., 2023, Sukhija et al., 2025, Anthony

{sjaelee, daniekpo, hwl, furongh, abhinav, jbhuang}@umd.edu
* These authors contributed equally. ' These authors equally advised this work.


https://ive-robot.github.io/

Tangrams

Green Block Green Block <— Remote Control Green Block «— Remote Control

Common Objects

Corresponding — Stacked on

scene graphs: +—— Near * * l Tennis Ball +— Apple
Rubik’s Cube Rubik’s Cube Rubik’s Cube

Figure 2: Autonomous scene exploration with IVE. IVE enables autonomous exploration of the scene with diverse
objects, e.g., a tangram (top) or common objects (bottom).

et al., 2024).

Reinforcement learning (RL) has been a dominant paradigm for autonomous exploration, often leveraging
intrinsic rewards to promote novelty (Pathak et al., 2017, Mendonca et al., 2021, Seo et al., 2021) or goal
sampling to improve coverage of the state space (Pong et al., 2020, Hu et al., 2023). While effective in
simulation or low-dimensional tasks, RL methods often struggle in real-world robotic settings that are high-
dimensional and semantically rich. These environments demand purposeful and interpretable interactions
for effective exploration and thus efficient learning. This limitation is particularly acute in physical domains,
where agents must contend with real-world constraints and safety risks—rendering the undirected or
stochastic behaviors often encouraged by RL not only inefficient but also potentially hazardous.

In light of these challenges, vision-language models (VLMs) offer a promising alternative. Their broad
semantic knowledge and reasoning capabilities have enabled advances in robotic perception, reasoning, and
high-level decision making (Huang et al., 2023, Shah et al., 2023, Etukuru et al., 2024, Tan et al., 2025).
Building on these strengths, VLMs also offer a promising foundation for guiding exploration by generating
hypothetical transitions, or quantifying novelty (Kuang et al., 2024, Jiang et al., 2024b,a, Sancaktar et al.,
2024).

While VLMs excel at semantic imagination, such as hypothesizing future scene configurations or suggesting
abstract action plans, they lack grounding in the physical dynamics of the real world (Li et al., 2023, Hu
et al., 2024, Elnoor et al., 2024). This disconnect presents a fundamental challenge: imagined transitions
might seem semantically plausible, but they can be physically infeasible, insufficiently diverse for meaningful
exploration, or even unsafe to execute. Moreover, VLMs operate without structured memory of prior
interactions, making it difficult to reason about which states have already been visited or which actions
have been attempted. This absence of memory and grounding often leads to redundant, implausible, or
low-diversity generations that hinder effective exploration and downstream learning.

To address this challenge, we introduce IVE (Imagine, Verify, Execute), a fully automated, VLM-guided
system for agentic exploration, inspired by human exploration—by generating self-directed goals, reacting
to new information, and refining their understanding through experience (Ten et al., 2021, Modirshanechi
et al., 2023, Lidayan et al., 2025). IVE enables agents to imagine novel future configurations, predict their
feasibility based on recent interaction history, and execute selected behaviors via a library of skills. Central
to IVE is a modular system comprising: (1) a Scene Describer that abstracts raw observations into structured,



semantic representations, (2) an Explorer that generates self-directed goals and corresponding skill plans,
(3) a Verifier that predicts physical plausibility of imagined transitions, (4) a retrieval-based Memory Module
that stores and surfaces past experiences to inform exploration and verification, and (5) Action Tools that
convert high-level skills to executable robot trajectories.

These modules operate in a tightly coupled loop: the Scene Describer provides a semantic abstraction of
the environment, which is used by the Explorer to imagine novel scene transitions. The Verifier, informed
by past transitions from the Memory Module, filters out physically implausible or redundant plans. Once
verified, the Action Tools instantiate the chosen skill sequence into actionable commands. This design grounds
imagination in physical feasibility and contextual relevance, enabling the agent to generate diverse, executable
behaviors informed by both semantic reasoning and embodied experience.

The experience generated by IVE is not only physically grounded and semantically rich, but also directly
reusable for downstream tasks such as behavior cloning and world model learning. We demonstrate that
policies trained on data collected through IVE achieve performance comparable to—or even exceeding—that
of policies trained on human demonstrations in manipulation tasks. Beyond policy learning, data obtained
via IVE also facilitates better world model training, highlighting its effectiveness in capturing the underlying
dynamics of complex environments.

Contributions. We make the following key contributions:

* Curiosity-Driven Exploration via Imagination and Verification. We introduce IVE, a novel framework
that combines memory-guided imagination with physical plausibility prediction to emulate human-like
curiosity in embodied agents, achieving a 4.1 to 7.8 X increase in state entropy over RL baselines.

* Reward-Free Data Collection with VLMs. We develop a fully automated, vision-language model-guided
agentic system for generating semantically meaningful interaction data—without requiring external
rewards, demonstrations, or predefined goals, achieving 82% to 122% of the scene diversity exhibited by
expert humans.

* Validation Across Downstream Tasks. We provide extensive experiments in both simulated and real-
world tabletop environments, demonstrating that IVE improves exploration diversity and enables stronger
policy learning and world model training compared to RL-based baselines.

2. Related Work

Exploration for Robotic Learning. Exploration is a fundamental challenge in enabling robots to understand
their environment and learn task-relevant behaviors. It plays a critical role in building accurate models of
environmental dynamics, discovering affordances, and identifying effective strategies for control. To tackle
the challenge of exploration, many prior methods have often leveraged RL. Two prevalent approaches within
this paradigm are intrinsic reward-driven or goal sampling-based.

Intrinsic reward methods encourage exploration by rewarding novelty or surprise, such as prediction error in
forward or inverse models (Pathak et al., 2017, Burda et al., 2019, Mendonca et al., 2021), entropy of the state
(Seo et al., 2021, Kim et al., 2023), or state visitation counts (Martin et al., 2017, Shahidzadeh et al., 2024).
These approaches incentivize novel interaction with unfamiliar states, but often lack semantic understanding
about the task, leading the agent to focus on perceptual novelty rather than exploring task-relevant behaviors.

In contrast, goal sampling methods guide exploration by explicitly sampling target states to reach. Goals can
be selected to maximize temporal distance from initial state (Durugkar et al., 2021, Klissarov and Machado,



2023, Bae et al., 2024), to target uncertain regions (Cho et al., 2023, Hu et al., 2023), or to ensure broad
coverage over a state representation (Pong et al., 2020, Pitis et al., 2020, Yarats et al., 2021, Mahankali et al.,
2024). While often more directed than intrinsic rewards, these method still lack mechanisms to identify
meaningful goals, and often struggle in high-dimensional observation spaces, where learning a reliable latent
representation or estimating uncertainty becomes challenging.

Vision-language models for Robotics. VLMs have emerged as powerful tools for bridging visual perception
and language-driven understanding. VLMs have demonstrated strong generalization across diverse tasks,
enabling applications in robotic task generation (Ahn et al., 2022), autonomous data collection (Zhou et al.,
2024b), evaluation (Zhou et al., 2025), and serving as high-level planners for low-level action tools (Hu et al.,
2024, Shah et al., 2024). While VLMs offer rich semantic understanding, leveraging them specifically for
guiding exploration remains relatively underexplored. Recent efforts include using VLMs to autonomously
improve goal-conditioned policies (Zhou et al., 2024b) or explore VLM-guided exploration by asking models
to rank observations based on semantic interestingness (Sancaktar et al., 2024). Similar to prior works, we
use a VLM in our work. Unlike prompting the VLM to rank observations (Sancaktar et al., 2024) we use the
VLM to guide exploration by prompting the VLM to imagine and propose physically plausible actions that
will lead to novel scene configurations.

Scene graph for observation abstraction. Scene graphs, which encode objects and their relationships as
graph structures (Johnson et al., 2015), emerged as a powerful tool for semantic scene understanding in
computer vision (Krishna et al., 2017, Ji et al., 2020, Johnson et al., 2018, Ashual and Wolf, 2019, Dhamo
et al., 2020, Herzig et al., 2020). Scene graphs have been integrated into robotic pipelines for grounding
natural language instructions into executable actions (Rana et al., 2023, Ni et al., 2024), verifying plan
feasibility through iterative reasoning (Ekpo et al., 2024), and supporting open-vocabulary understanding
in mobile manipulation (Gu et al., 2024). Scene graph representation also enables hierarchical spatial
reasoning (Ravichandran et al., 2022), object rearrangement via coarse-to-fine imagination (Zhai et al.,
2024), and robust planning under partial observability (Amiri et al., 2022), highlighting their role in bridging
high-level semantic reasoning with low-level physical execution. Similar to prior methods (Ekpo et al., 2024,
Rana et al., 2023), we use scene graphs as an intermediate representation to the VLM. Unlike prior methods,
we use scene graphs to measure the novelty of new scenes, encouraging the VLM to explore diverse scenes.

3. Method

Overview. We propose a fully automated, VLM-driven exploration system, IVE, built on an agentic
architecture composed of three core modules: the Scene Describer, the Explorer, and the Verifier. An overview
of the IVE system is shown in Figure 3.

IVE begins by constructing an abstract, semantic representation of the current observation using the Scene
Describer (Section 3.1). The Explorer then proposes candidate future scenes along with skill sequences
intended to achieve them (Section 3.2). These candidate plans are evaluated by the Verifier, which predicts
their physical plausibility and utility before execution (Section 3.3).

In addition to these core components, two auxiliary modules support the system: the Memory module
retrieves relevant past experiences to inform both the Explorer and Verifier (Section 3.4), and the Action
Tools module translates the skill sequences into executable robot actions (Section 3.5).

For all experiments, we use GPT-40 as the vision-language model backend to power semantic reasoning and
generation.
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Figure 3: Overview of IVE. Given an observation oy, the Scene Describer constructs a semantic scene graph G;. The
Explorer leverages this representation, along with the current observation and retrieved past scene graphs, to generate

(“imagine”) a candidate future scene graph G;,; and a sequence of skills y}:N. The Verifier evaluates the feasibility of
these imagined transitions using recent interaction history. If verified, the skills are instantiated into low-level actions
via the Action Tools and executed by the robot. Otherwise, the Explorer receives feedback and replans. The iterative
process enables structured, curiosity-driven exploration grounded in semantic reasoning and informed by physical
feasibility.

3.1. Scene Describer

The Scene Describer module, powered by VLM, constitutes the frontmost component of our system, abstracting
raw observations into structured scene graphs that capture semantic object relationships. By converting high-
dimensional visual inputs into compact, symbolic representations, this abstraction reduces the complexity of
reasoning over raw sensory data, enabling more efficient exploration of novel scene configurations.

Given an observation o; (RGB image at timestep t), the scene describer produces a scene graph G; = (V, E),
where V' denotes the set of objects (nodes) and E encodes directed, typed semantic relations (edges) between
pairs of objects. Each object v € V refers to a unique object name, and edges E include spatial and functional
relations such as Stacked on and Near. The design of the scene graph can be adapted depending on the
task, allowing flexibility in the level of abstraction and the types of relations captured.

HNlustrative Example. Consider a tabletop scene containing a red cup, a blue block, and a tray. The Scene
Describer may produce:

V = {Red cup, Blue block, Tray, ...} (1)
E = {(Blue block, Stacked on, Tray), (Red cup, Near, Tray)} (2)

This abstract graph captures spatial relations without requiring dense 3D reconstruction. It allows the
Explorer module to hypothesize meaningful future configurations (e.g., “move the cup onto the tray”) while



enabling the Verifier to assess feasibility (e.g., “Is the tray already full?”) based on prior experiences.

3.2. Explorer

The Explorer module is a VLM-based component that takes as input the current RGB observation o;, the
corresponding scene graph G;, and a set of relevant past experiences retrieved from memory (Figure 3).
Using this contextual information, the Explorer imagines a future scene graph G,,; preserves the object
set of G; but alters the edge structure—representing new spatial or functional relationships among objects.
These imagined transitions enable the agent to reason about potential next states beyond those encountered
previously.

To promote novelty and avoid redundancy, the Explorer compares G,,; with retrieved scene graphs from
memory, encouraging transitions that are diverse and previously unseen. This memory-aware imagination
supports a form of curiosity-driven exploration over structured symbolic representations.

In parallel with the imagined graph, the Explorer generates a sequence of N high-level skills y}:N intended
to transition the agent from G, to G,,;. Each skill corresponds to a discrete, interpretable action primitive
from a predefined skill library (e.g, “move the cup to the left of tray”).

These skill sequences are then passed to the Verifier for physical feasibility assessment prior to execution.
This separation of imagination and verification ensures that only plausible and contextually novel transitions
are enacted in the environment.

Continuing Example. Returning to our earlier example, suppose the current scene graph encodes that the
block is Stacked on the tray and the cup is Near the tray. The Explorer may propose a future graph where
the cup is now Stacked on the tray and the block is Near the tray. It may then generate a skill sequence
such as:

y}zz = {move(Red cup, Stacked on, Tray), move(Blue block, To the left of, Tray)} 3

3.3. Verifier

The Verifier module supervises the sequence of skills y}:N proposed by the Explorer, assessing whether
the imagined transition is plausible, physically feasible, and stable. Unlike the Explorer—which operates
on current context—the Verifier considers a broader temporal window by accessing recent transitions
{Gi-n, y}:_IZ, <, G, ]/t}:_I}]}. This history provides insight into the agent’s prior actions and their outcomes,
allowing the Verifier to make informed judgments grounded in embodied experience.

Given the current observation and the proposed plan, the Verifier predicts the likely outcome of executing the
proposed actions y}:N and compares the predicted scene graph G, to the Explorer’s intended goal graph.

Beyond semantic alignment, the Verifier checks physical feasibility by accounting for embodiment constraints
(e.g., gripper kinematics, reachability) and environmental dynamics. It also performs stability checks—
such as detecting precarious object placements, occlusions, or workspace clutter—that may compromise
successful execution. If the proposed plan is unsafe or unlikely to succeed, the Verifier recommends corrective
interventions, such as reordering skills, repositioning obstructing objects, or decluttering the workspace.

The Verifier module returns a structured feedback signal f; composed of:

* a binary decision: “Yes” if the plan is executable or “No” otherwise;



* and, for “No” cases, an explanation detailing rejection reasons (e.g., infeasibility, instability, or deviation
from the goal).

Continuing Example. In our tabletop scenario, if the Explorer suggests stacking a cup on a tray that is
already full, the Verifier may reject the plan due to instability: It may return:

f+ = No: Cannot place cup on tray — unstable configuration. Suggest removing the Blue block
from the Tray first, then placing the Red cup on the tray.

3.4. Memory Retrieval

To support novelty-based exploration and informed decision-making, IVE maintains a dynamic memory
module M that stores previously encountered scene graphs G derived from past observations. These
structured graphs serve as compact, symbolic summaries of prior interactions, enabling the system to reason
over what has already been seen and done.

Each G is instantiated using the NetworkX library, allowing efficient graph storage, manipulation, and
querying. At each timestep t, the Explorer queries M to retrieve a set of past scene graphs that are
structurally similar to the current scene graph G;. Specifically, the retrieved set is defined as

{G; € M| dist(G,, G)) < T}, 5)

where dist(G;, -) denotes an edit-based graph distance from the current scene G;, and 7 is a predefined
similarity threshold. This retrieval process surfaces relevant prior experiences that guide the Explorer in
imagining transitions that are both novel (i.e., not previously observed) and physically plausible given
historical outcomes.

In parallel, the Verifier leverages the same memory to assess the feasibility of proposed skill sequences, using
previously executed transitions as empirical priors for prediction. Thus, memory plays a dual role: enabling
semantic novelty in the imagination process and providing a grounded context for physical verification.

Continuing Example. Suppose the current scene G; encodes a cup next to a tray, with a block positioned
above. The memory might retrieve a prior scene where the block was stacked on the cup and the tray was
empty, helping the Explorer avoid redundant imagination and providing the Verifier with context on whether
that configuration was previously successful or unstable.

3.5. Action Tools

To bridge the high-level skill sequence y}:N generated by the Explorer with real-world execution, we employ
an Action Tools module that translates each skill into a corresponding low-level action sequence A}:N using
RGB-D observations of the current scene. We first instantiate each skill y; with a predefined set of task-specific
primitives that arealigned with the robot’s embodiment and operational constraints. After executing a skill,
IVE records the resulting state, constructs the updated scene graph G;.1, and stores the transition tuple
(G, y}:N, Gi+1) in memory, completing a full imagination-verification-execution cycle.



Tool Categories. Our action toolset includes three discrete types of manipulators:

1. Relation-Based Placement Tools: Execute relational actions that position objects with respect to
others (e.g., “To the left of,” “Stacked on”) as shown in Figure 4.

2. Region-Based Placement Tools: Place objects at specific locations on a predefined 2D layout (e.g.,
grid cells).

3. Arranger Tool: Manages workspace cleanliness by moving unreferenced or obstructive objects to free,
uncovered regions, enabling subsequent actions.

Modularity. The design of the Action Tools module is deliberately modular and extensible—new primitives
or skills can be incorporated seamlessly without requiring architectural changes to other components. This
modularity ensures that IVE can adapt to diverse task domains and hardware platforms by swapping or
extending action capabilities.
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Figure 4: Example of transforming ‘relation-based placement tool’ skill to action in a real-world environment.

4. Experiments

Our experiments aim to answer the following questions:

1. Exploration Quality: How does IVE compare to conventional exploration strategies in producing
diverse and meaningful interactions? (Figure 6)

2. Component Effectiveness: How does each module contribute to the overall performance of the system?
(Figure 8)

3. Downstream Utility: How useful is the collected data for behavior cloning and world model learning?
(Tables 1, 2)

4.1. Experimental Setup

Simulation Environment. We use VimaBench (Jiang et al., 2023), a simulated tabletop environment
containing multiple rigid objects with varied shapes and colors. The robot is equipped with a suction end-



effector and can execute pick-and-place in continuous action space. To efficiently explore this environment,
reasoning over spatial configurations while maintaining physical interaction constraints is required.

Real-World Environment. We use a 6-DoF UR5e robot arm with a parallel gripper to interact with tabletop
objects. A VLM, GPT-40 (OpenAl, 2024), observes the current scene and proposes high-level actions, which
are then parsed and executed through a low-level controller. We predict the Grasp poses using AnyGrasp (Fang
et al., 2023), with target objects segmented via LangSAM (Medeiros, 2023), closely following the approaches
introduced in Liu et al. (2024a,b). We apply a heuristic preference for top-down grasps for improved reliability.
We compute drop positions using depth data and segmentation masks. For the “Stacked on” relationship, we
first calculate the midpoint of the target object using the object’s segmentation mask, then we calculate the
drop height using the depth data for the object region. After each execution, we collect the robot pose, task
success status, and RGB data and add them to the experience buffer for downstream tasks.

4.2. IVE Outperforms RL and Human Baselines in Exploration Diversity
We compare IVE against intrinsic motivation RL baselines and three human-controlled exploration strategies.

RL Baselines. For the RL baselines, we implement intrinsic motivation methods such as RND (Burda et al.,
2019) and RE3 (Seo et al., 2021). RND and RE3 drive exploration based on the novelty of observation.

Human Baselines.

* Human (Expert), given evaluation objectives and allowed to operate robot via action tools.
* Human (Novice), no specific instructions; uses action tools freely.
* Human (Moved by hand), directly manipulates objects without using the robot arm.

Key Result. As shown in Figure 6, IVE achieves 4.1 to 7.8 X increase in state entropy over RL baselines
and 82% to 122% of the scene diversity exhibited by expert humans. Its performance is comparable to
human experts in early exploration (first 50 transitions) but scales better due to memory-assisted recall. In
real-world settings, IVE approaches expert-level performance despite execution noise.

VLM Generalization. Figure 6 shows that IVE discovers signif-
icantly more unique scenes and achieves higher entropy than hu-
man participants in the simulation. ! We attribute this to humans
gradually forgetting previously encountered scenes, whereas IVE
tracks all past configurations via retrieval. When considering only
the first 50 transitions, human performance in simulation closely " ! .
matches that of IVE. In the real world, IVE slightly underperforms s’
kite

compared to a human expert. bird penguin

a3 LS

Shark Sailboat

To further assess robustness, we compare IVE across different Fi . .

. . igure 5: Tangram shapes exploration
vision-language models (VLMs) beyond GPT-40. As shown in Fig- by IVE. IVE autonomously explores and
ure 7, IVE consistently matches or outperforms human experts  assembles tangram pieces into novel struc-
across various exploration metrics, regardless of the underlying tures. Labels are assigned by a VLM.
VLM.

Why RL Falls Short. RlL-based baselines, including RND (Burda et al., 2019) and RE3 (Seo et al., 2021),
perform worse than both IVE and human participants. We believe this reflects a limitation of RL-driven

!Refer to the Appendix A for details on how entropy and scene counts are computed.
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Figure 6: Exploration capability evaluation across simulated and real-world environments. Top: Growth curves of
the number of unique scene graphs visited. Bottom: Diversity of visited states, measured by entropy (see Appendix A
for the definition and computation details for entropy, and 4.2 for baseline details.
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Figure 7: Exploring with Embodied Agents: This figure compares the exploration capabilities of our method, IVE,
powered by different Vision-Language Models (VLMs) rather than GPT-40. Notably, IVE, regardless of the VLM used,
matches or surpasses the human expert in generating unique scene graphs, achieving higher state diversity, and gaining
more information.

exploration that prioritizes pixel-level novelty over semantically meaningful interactions. In environments
without external rewards or task-specific feedback, RL exploration must rely solely on intrinsic rewards,
making structured and meaningful exploration challenging. In contrast, IVE explores with semantic structure
and memory-based recall, enabling higher-level diversity without external rewards.

4.3. Ablations Reveal Memory, Explorer and Verifier Are Critical for Effective Exploration

We ablate components of IVE to quantify their impact on exploration performance (Figure 8). The following
variants are tested:

* Random Tool Selector uniformly samples action tools with no planning.

* w/0 Explorer (Rule-Based Explorer) uses simple rules to generate scene graphs; retains VLM for skill
generation.

* w/0 Memory disables retrieval-based grounding.

* w/0 Verifier skips physical feasibility filtering.

10



Key Result. Removing the memory module and the explorer results in a 22% and 27% drop in unique
scenes discovered, respectively, along with a reduction in entropy and information gain—highlighting its
importance for novelty-aware planning. The Verifier also proves essential, filtering out infeasible or unstable
interactions and improving long-horizon planning quality.
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Figure 8: Ablation study of IVE. (Top) Illustration of each variant, highlighting removed modules in gray. (Bottom)
Exploration performance is measured by the number of unique scene graphs, entropy, empowerment, and information
gain (see Appendix A for metric details). Removing retrieval memory or explorer causes the largest performance
drop, emphasizing the importance of experience-grounded generation. Verifier removal slightly degrades performance,
particularly in terms of information gain and entropy, but empowerment remains relatively stable. The random tool
selector baseline performs the worst across all metrics. Our full model (IVE) approaches human-level exploration
efficiency.

We evaluate these variants based on the number of unique scene graphs visited, entropy, empowerment,
and information gain. Figure 8 shows that removing the memory module results in a large performance
drop, highlighting the critical role of retrieval-based grounding. Verifier removal also degrades performance,
although empowerment remains relatively stable—likely because the verifier proposes fewer decluttering
actions, and such actions are inherently more stochastic and less goal-directed. The random tool selector
baseline performs the worst, achieving less than half the number of unique graphs discovered by IVE.

Table 1: Performance of goal-conditional and non-conditional behavior cloning across tasks in simulation. Our method
achieves human-level performance and significantly outperforms exploration RL baselines (RND (Burda et al., 2019)
and RE3 (Seo et al., 2021)), demonstrating the effectiveness of our exploration strategy in generating diverse and
semantically meaningful data. Example goal images used for the goal-conditioned tests are provided in Appendix C
(see Figure 11).

Non-conditional Goal-conditional
Exploration Method # of achieved tasks  Entropy Success rate
SAC (Haarnoja et al., 2018) + RND (Burda et al., 2019) 2.0 1.907 8.33%
. SAC (Haarnoja et al., 2018)+ RE3 (Seo et al., 2021) 2.1 1.754 0.00%
VIMA Bench (5 objects) g’ (yy,r) 4.1 2.283 58.33%
Human 3.6 2.021 50.00%
SAC (Haarnoja et al., 2018) + RND (Burda et al., 2019) 2.0 1.907 0.00%
. SAC (Haarnoja et al., 2018) + RE3 (Seo et al., 2021) 1.2 1.959 0.00%
VIMA Bench (4 objects)  1yp’ (yy,r) 3.1 1.528 41.67%
Human 4.2 1.897 33.33%

11



Table 2: Quantitative evaluation of World Model (WM) predictions using datasets collected by different exploration
methods, trained with DINO-WM (Zhou et al., 2024a).

Sim Env 1 Sim Env 2 Real World
Exploration Method SSIM (1) LPIPS ({) SSIM (1) LPIPS (1) SSIM (1) LPIPS ({)

SAC (Haarnoja et al., 2018) + RND (Burda et al., 2019)  0.812 £ 0.039  0.198 + 0.060  0.855 + 0.036  0.168 + 0.061

SAC (Haarnoja et al., 2018) + RE3 (Seo et al., 2021) 0.814 + 0.040 0.199 + 0.057 0.850 + 0.034 0.168 + 0.059 - -

IVE (Ours) 0.837 = 0.032 0.129 = 0.044 0.853 =0.032 0.160 = 0.058 0.634 = 0.075 0.181 * 0.056
Human 0.833 +£0.032 0.126 + 0.042 0.862 * 0.027 0.139 = 0.047 0.653 = 0.072 0.194 = 0.056

4.4. 1VE Enables Stronger Policy Learning and World Modeling

We evaluate two downstream tasks to validate the usefulness of the data from the exploration.

* World Model Accuracy (WM): Measures the prediction accuracy of a learned dynamics model trained on
the exploration data using DINO-WM (Zhou et al., 2024a).

* Behavior Cloning (BC): Evaluates how well a Diffusion Policy (Chi et al., 2023), trained on the exploration
dataset, can achieve novel goals presented as images.

We compare behavior cloning performance using datasets collected by three different strategies: our method,
reinforcement learning-based exploration (SAC (Haarnoja et al., 2018) with RND (Burda et al., 2019) and
RE3 (Seo et al., 2021)), and human demonstrations (WM only). Both goal-conditional and non-conditional
policy is trained to perform a sequence of pick-and-place actions.

Key Result. As shown in Table 1, policies trained on IVE data outperform those trained on RL exploration
data by up to +58% in task success, and achieve performance on par with human demonstrations.
Similarly, Table 2 shows that world models trained on IVE data nearly match those trained on human
data—validating the semantic richness and consistency of our collected trajectories.

Table 1 shows IVE outperforms RL-based baselines and achieves competitive performance of policies trained
on human-collected data. Similarly, in world model (WM) prediction tasks, Table 2 shows that IVE achieves
performance closest to that of human-collected data. The results on both policy learning and world model
prediction highlight the benefits of its structured and diverse exploration strategy for downstream tasks.

5. Conclusion

We introduced IVE, an agentic exploration framework that integrates imagination, verification, and execution
to enable efficient exploration in robotic systems. By leveraging the broad knowledge of VLMs, our method
enables robots to explore and interact with their environment autonomously. The imagine-verify-execute
cycle in IVE promotes high-level semantic diversity during exploration, resulting in rich datasets for learning
downstream tasks. In future work, we plan to expand the set of action tools available to the system, enabling
more complex interactions and improving the generality of agentic exploration.

Limitations. While our method performs well, it shares common limitations of real-world robotic systems.
VLM-based reasoning introduces some latency, which could be reduced with lighter or distilled models. Our
action tools are manually defined, which limits scalability for complex tasks; integrating learned policies
as tools could address this limitation. Finally, our reliance on open-vocabulary object detection can lead to
failures with occluded or novel objects—future work could incorporate multi-view perception or interactive
discovery to improve robustness.
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A. Evaluation Metrics for Exploration Capability

To quantitatively evaluate the agent’s ability to explore its environment, we use the following metrics that
capture diversity, informativeness, and control capacity over future states, as described in Lidayan et al.
(2025). We treat the state space S (s € S) as a discrete set of scene graphs to enable interpretable analysis.

* Unique Scene Graphs: The number of distinct scene graphs encountered during exploration. A higher
count reflects greater semantic diversity.

» State Entropy: Measures the entropy of the agent’s state visitation distribution. Let N; denote the number
of visits to state s. Then p(s) = Ns/ ) o Ny, and entropy is given by:

H(S) := =) p(s)logp(s)

* Information Gain (IG): Quantifies how much new information is acquired in each episode. Define N, as
the count of action a taken in state s up to episode e. The information gain for episode e is:
e e—1
Z(s,a) IGO(S/Q) - IGO (S/ Ll)

IGE : e e—1
Z(s,a) Ns,a - Ns,a

4

where IGy(s,a) := log(1 + Ng ).
* Empowerment: Captures the agent’s control over future outcomes. Defined as the mutual information
between actions and resulting states:

p(s'|a)
p(s'la")p(a')

E := max I s';a $) = max s'la)p(a)lo
max (s5a | 5) W);p( [a)p(a)log 5=

Since exact computation is intractable, we approximate p(s'|a) via sampling and scene graph transition
statistics.

For fair comparison, we quantize observations into scene graphs using methods that differ from those
employed in IVE. In simulation, we construct scene graphs using a heuristic based on ground-truth object
positions, encoding relative distances and spatial relationships. In the real world, where ground-truth
positions are unavailable, we generate scene graphs using a separate perception pipeline. Importantly,
both the prompt design and scene graph structure used for evaluation are distinct from those used in IVE.
Please note that in both settings, none of the agents—including IVE and all baselines—have access to the
ground-truth object positions or the internal graphs used for evaluation.

B. Real world robot setup

The system is implemented on a Universal Robot UR5e robot arm with a Robotiq 2F-85 gripper. An Intel
Realsense D435i depth camera is mounted on the robot end-effector. The workspace is a tabletop workspace
with predefined boundaries. All robot poses are clipped to the workspace boundaries for safety.

B.1. Grasp Planning and Execution

The system implements two grasp strategies. The primary strategy uses Anygrasp (Fang et al., 2023) for
grasp pose detection, which provides the grasp pose in the camera frame. We transform this to the robot base
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frame using the camera calibration and convert the 4 X 4 matrix to an axis-angle rotation vector using the
Rodrigues method. The execution sequence moves to a clearance height 0.1m above the grasp pose, aligns
rotation, descends to the grasp pose with a z-offset of —0.048m. The object is lifted to a clearance height to
avoid collision and then moved to the destination pose.

The tangram grasp strategy uses a centroid-based approach. We compute the object centroid using image
moments, project it to 3D using the pinhole camera model, and transform to the robot base frame. The grasp
pose is set to the centroid position with a z-offset of —0.01m and a fixed rotation of [0, —7t,0].

B.2. Relation-based Placement and Tangram Manipulation

The system implements six spatial relationships: STACKED ON, IN FRONT OF, BEHIND, TO LEFT OF,
TO_RIGHT OF, and ARRANGE. For each relationship, we compute the drop point using a relationship-
specific algorithm.

* STACKED ON relationship calculates the drop height by finding the maximum z-coordinate of the target
object in the depth image and adding a drop height offset of 0.01m.

* IN FRONT_ OF and BEHIND relationships compute a y-offset of £0.08m from the target object’s bounding
box.

* TO_LEFT OF and TO_RIGHT _OF relationships use an x-offset of +£0.08m.

* ARRANGE relationship employs a depth-based ground plane detection algorithm. We create a ground
mask by thresholding the depth image at the table height, erode it using a kernel size proportional to
the manipulated object’s dimensions, and apply boundary constraints excluding regions very close to the
workspace edges. From the valid placement regions, we randomly sample a placement point to introduce
diversity while maintaining safety constraints.

For tangram manipulation, we implement a specialized edge alignment system that first detects polygon
edges using contour detection with an epsilon ratio of 0.02. The system then compares the source and
destination masks to find the optimal edge alignment. For each pair of edges, we compute the alignment
angle by finding the angle between the edge vectors, considering both parallel and anti-parallel alignments.
Since tangram pieces are constrained to rotate only in the z-axis, we compute the rotation matrix around
the z-axis using the alignment angle. The translation is determined by computing the vector between the
midpoints of the aligned edges, with additional jitter sampling to account for small variations in placement.
We evaluate each potential alignment by computing the contact length between the edges and applying an
occlusion penalty based on the overlap between the source and destination masks. The system selects the
alignment with the maximum contact length while minimizing occlusion. All coordinate transformations
between camera and robot frames are handled using standard eye-in-hand calibration and the pinhole
camera model.

B.3. Region-based Placement

To enable the Vision-Language Model (VLM) to refer to specific spatial locations in the workspace, we
introduce a Region-Based Placement Tool that discretizes the environment into a labeled grid map (Figure
9). The workspace is overlaid with a checkerboard-style grid, where each cell is uniquely indexed (e.g., Al
to E10). This grid is rendered as an image and passed to the VLM.

Given this structured input, the VLM can issue explicit placement instructions using symbolic coordinates:
move (object_name, target_grid). For instance, the command move(red_cross, B8) indicates
that the object referred to as red_cross should be placed in cell B8. This discrete representation allows
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the model to generate unambiguous spatial commands and simplifies the mapping from language to robot
actions.

Figure 9: The Region-Based Placement Tool overlays the workspace with a labeled grid, allowing the VLM to reference
specific spatial locations when issuing placement commands.

C. Evaluations on Downstream Tasks

GT

Human

SAC+RND  SAC+RE3

Human

ol

Figure 10: Qualitative examples of World Model (WM) predictions using datasets collected by different exploration
methods. Red rectangles highlight regions with notable prediction errors.
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Figure 11: To evaluate the performance of the behavior cloning policy, we train Diffusion Policy (Chi et al., 2023) on
each dataset and evaluate it on goal-conditioned tasks, where the initial observation is fixed and the agent is tested
with six different goals.

D. Prompts for IVE

D.1. Scene Describer

The Scene Describer takes an RGB image and produces a structured scene graph that captures object identities
and spatial relations. This module enables symbolic reasoning by abstracting the raw observation into a
graph-structured representation. The prompt below guides a vision-language model to construct this graph
iteratively.

The process consists of three main stages:

* Step 1 - QnA Section: For each object, the model predicts its closest objects and describes their spatial
relationship from that object’s perspective.

* Step 2 - Iterative Scene Graph Construction: The scene graph is built incrementally by adding one object
at a time and determining its relation to previously introduced objects.

e Step 3 - Final Scene Graph Output: The final graph is compiled from all previously gathered information,
listing nodes (objects) and edges (relations) using only allowed relation types.

Below is the exact prompt used to guide the model:

Prompt.

## Your Task

You are an expert image analyzer tasked with identifying the x**exactx*x*
placement and spatial relationships of specific objects. Your job is
to generate a scene graph describing these spatial relations x**solely
** based on the objects' visible positions in the image.

As an image analyzer, Follow Step 1~3 below.

## Step 1: Fill the Answer in QnA Section
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## Step 2: Iterative Scene Graph Construction
1. Begin with one object.
2. Add one new object at a time, to your partial scene graph.
3. For each newly added object:
- Determine its spatial relation(s) to the objects already in the
scene graph.
- **xUse only** the Allowed Relations in the scene graph.
- Do not assign more than one relation for the same object pair ~(
new_object, existing_object)' == ~(existing_object, new_object)'
- You may introduce multiple relations at once if the new object
relates to multiple existing objects.

## Step 3: Final Scene Graph Output

1. **x0Once all objects** have been introduced and verified, compile a **
complete scene graphx**:
- **xList all nodes** (the objects in the final scene).
- *xList all verified relations** between pairs of objects, using the

Allowed Relations in the scene graph.

2. **Use only** objects from the "Global Object Names."

3. Even if there's missing nodes or edges in a final scene graph (because
at least one object is missing), you must still provide a complete *x*
scratch pad** and **scene graph** with existing relations.

## Scene Graph Representation

- Nodes: Objects present in the scene.
- Relations: Spatial relationships between object pairs.
- Allowed Relations in the scene graph:
- *xStacked On**: Object A is physically resting on Object B. This
requires clear direct contact-0Object A is visibly supported by
Object B from below.
- *xNear**: (Object A is positioned close to Object B without being
stacked. Use this only when the objects are almost touching.

## Global Object Names

"<GLOBAL_OBJECTS_HERE>'

## Output Format

Please structure your final output exactly as shown below (without the
lines). **Use the precise section titles*x:

[Step 1: Fill the Answer in QnA Section]

<QNA_FOR_OBJECT_RELATION >

[Step 2: Iterative Scene Graph Construction]

Iteration 1:

- Added obj_a.

- Explanation of how you confirmed its presence in the image.
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Iteration 2:

- Added obj_b.

- <obj_b, relation_type, obj_a> or <obj_a, relation_type, obj_b> (include
any additional relations or notes)

- Explanation of how you verified this relation.

. (continue until all objects are added and checked)

[Step 3: Final Scene Graph Output]

<start_graph>

Nodes: obj_a, obj_b,

Relations: <obj_a, Near, obj_b>, <obj_b, Near obj_c>, <obj_d, Stacked 0On,
obj_c>,

<end_graph>

QnA section. Below is an example of a generated QnA section, filled out based on a set of sample object
names:

[Step 1: Fill the Answer in QnA Section]

Object 1: red cube

What are the closest 0~3 objects from red cube? What are their relations
from red cube's perspective?

Answer: The red cube is near the blue cylinder and stacked on the green
base.

Object 2: blue cylinder

What are the closest 0~3 objects from blue cylinder? What are their
relations from blue cylinder's perspective?

Answer: The blue cylinder is near the red cube.

Object 3: green base

What are the closest 0~3 objects from green base? What are their
relations from green base's perspective?

Answer: The green base has the red cube stacked on top.

D.2. Explorer

The Scene Explorer module performs planning over an environment with objects. It receives a current scene
graph and predict a valid action sequence that results in a novel configuration. This task challenges the
model to reason about physics, constraints, and symbolic novelty.

The prompt includes:

* Action history: Provides the model with previously executed action sequence.
* Scene graph history: Supplies the model with previously visited scene graphs (which is retrived from
memory), encouraging novelty.

## Your Task
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You are an expert spatial planner. Given the Current Image, your job is
to generate a sequence of actions that discover a new scene
configuration-one that has not been seen before.

- In addition to the action sequence, you must provide the predicted
future scene graph (desired scene graph) that results from these
actions.

- You have two images taken from different camera viewpoints.

- You should provide at most “<NUM_STEPS_HERE>' actions.

## Scene Graph Representation

- Nodes: Objects present in the scene.

- Relations: Spatial relationships between object pairs.

- Allowed Relations in the scene graph:

- *xStacked On**: Object A is physically resting on Object B. This
requires clear direct contact-0Object A is visibly supported by
Object B from below.

- *xNear**: Object A is positioned close to Object B without being
stacked. Use this only when the objects are almost touching.

## Global Object Names

"<GLOBAL_OBJECTS_HERE>'

<ACTION_TYPES>

## Current Scene Graph

"<CURRENT_SCENE_GRAPH>'

## Scene Graph History

Shows previously visited scene graphs most similar to your current scene.

<SCENEGRAPH_HISTORY >

## Action History

"<ACTION_HISTORY>'

## Output Format

Your output format should look exactly like the content between the

————— '. **Do not** number the actions. It's important to wrap the

action sequence between “<start_action_sequence>' and °<
end_action_sequence>'. Also, write down the predicted future scene
graph (desired scene graph - the final arrangement after all actions)
between “<start_graph>' and “<end_graph>"'.

<start_scratch_pad>

Explain your reasoning:

- Why this is a novel scene

- Why the action sequence makes sense

- If there were oddities or contradictions in the histories, how did you
account for possible collisions, suction errors, or clutter?

<end_scratch_pad>

Predict (Desired) Future Scene Graph:

<start_desired_scene_graph>

Nodes: obj_a, obj_b,

Relations: <obj_a, Near, obj_b>, <obj_b, Near obj_c>, <obj_d, Stacked 0On,
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obj_c>,

<end_desired_scene_graph>

Next Action Sequence:

<start_action_sequence>

<ACTION_SEQUENCE_EXAMPLE>

<end_action_sequence >

### Important Considerations

1. Order Matters: Plan your actions so that preconditions are satisfied
before you move an object.

2. Scene Boundaries: If an object is near the scene boundary, avoid
pushing it further toward the edge or placing new objects in a risky
position.

3. Manipulation (Suction) Constraints:

- The suction can only reliably pick the topmost exposed surface.
- In cluttered areas, an attempt to move one object may cause
unintended collisions or shifts in neighboring objects.
- Stacking another object on top of an unstable object can lead to the
object toppling over.

4. Note: The 1list of allowed relations in Action Types and the relations
used in Scene Graph Representation ([Stacked On, Near]) may differ.
Desired Scene Graph should use relations among <SCENEGRAPH_RELATIONS>
only, same as other Scene Graphs. Please keep this in mind when
planning your actions.

Action types.

Actions available to the scene explorer fall into the following categories. These are symbolic commands
grounded in real-world physical execution, and the model may extend this vocabulary when necessary.

### Action Types
Actions are formatted in two ways:

1. “move(obj_a, RELATION, obj_b)'
e.g., “move(white cup, Stacked On, red plate)'
- Moves one object to a position relative to another.
- Allowed RELATION 1list: ~[In Front 0f, Behind, To The Left 0f, To The
Right 0f, Stacked On]'

2. "move(obj_a, GRID_ID)'

e.g., “move(blue ball, B3)'
- Moves an object to a grid location on the image. (°["Al1l", "B3", ...,
llElO"] |)
3, “arrange(obj_a)'
e.g., ~arrange(red block)'
- Pick up the objects and organize them in a clear area on the
Workspace.
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D.3. Verifier

The Scene Verifier is responsible for checking the validity and physical feasibility of a proposed action
sequence in dynamic environments. It assesses whether the actions, when executed from the current scene,
would produce the desired result without causing instability or unintended configurations.

One core component of this process is the transition history, a temporally ordered trace of the environment,
alternating between scene graphs and actions:

Scene Graph; — Action; — Scene Graph, — Action, — ... = Scene Graph,,

This history provides concrete grounding to reason about object configurations and action effects, enabling
the verifier to anticipate unintended side-effects like toppling, occlusions, or manipulation errors.

The verifier simulates outcomes, checks for physical plausibility, and may provide targeted suggestions or
recommend a decluttering strategy in edge cases.

## Your Task

You are a spatial reasoning expert responsible for **verifying action
plans** in physically dynamic environments.

You ensure that a proposed sequence of actions logically leads from the
current state to the desired scene graph, without triggering
unintended outcomes.

You may also provide **xtargeted suggestions** or, in rare but necessary
cases, recommend a **temporary shift to a decluttering strategy**.

## Goals

Given the current image (from two camera views), transition history,
desired scene graph, and a proposed action sequence:

**Simulate**x the effect of the action sequence from the current scene
**Predict** the resulting scene graph

**Compare** the predicted graph with the desired one

*x*Evaluate physical feasibility and execution stabilityx*x*
**Provide a judgment **:

- Valid and feasible

- Invalid (with reason)

- Valid but risky (suggest a targeted fix)

- Too unstable to proceed (recommend declutter mode)

<ACTION_TYPES>

GO wWwN -

## Transition History

A sequence of alternating scene graphs and actions showing the
environment 's evolution.

"<TRANSITION_HISTORY>'

## Output Format

<start_scratch_pad>

Step-by-step analysis:

- Simulate and predict the resulting scene graph.

Scene Stability Check:

- Are any objects in clearly unstable or unreachable positions?
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- Do previous transitions indicate failures or ambiguous changes?

- Are cluttered zones, deep stacks, or occlusions affecting safety or
reliability?

Decision:

- Is the action sequence logically valid and does it produce the desired
scene graph?
-> YES or NO

If NO:

- Explain which actions fail and why.

- Point out mismatches or invalid tramnsitions.

If issues are detected:

- Identify objects or areas causing risk (e.g., unstable stacks, blocked
objects).

- Suggest fine-grained intervention (e.g., "move obj_A before continuing
Il).

If the environment is severely cluttered and unsafe:

- Recommend a temporary shift to a decluttering mode
<end_scratch_pad>

<start_decision>

YES or NO

<end_decision>

<start_reason>

[If NO: Brief but clear explanation of what failed or was mismatched]

- risky: Warning message with suggestion, e.g., "Unstable stack: move
obj_b before continuing"
- Too unstable: "Scene too cluttered. Recommend temporary declutter mode

[If YES and no issues: Leave this part emptyl
<end_reason>

## Scene Stability Considerations

Clutter or instability **does not always require full decluttering**.
Consider recommending targeted fixes first.

#### Examples of Minor Intervention:

- ""obj_b is stacked on obj_a, which is already supporting obj_c.
Recommend moving obj_b first to prevent instability."'

- ""obj_d is partially occluded and may be hard to suction. Recommend
shifting nearby obj_e first."'

#### Examples of Decluttering (rare):

- ""Multiple overlapping clusters and deep stacks suggest high
instability. Recommend decluttering of current layout before further
scene exploration."'
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